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The trajectories of surface and subsurface particles of nonlinear gravity-capillary 
waves are calculated. Surface tension is found to have a small effect on the trajectories 
and drift velocity of pure gravity waves (down to 20 cm in length). On the other hand, 
pure capillary wave trajectories can be considerably altered even when the influence 
of gravity is small (waves of up to 2 cm in length). When the restoring forces are of 
comparable magnitude, some remarkable trajectories are possible, containing one or 
more subloops. Overall, the influence of increased surface tension is to increase the 
relative horizontal distance travelled by a particle, as well as the magnitude of the 
time-averaged drift velocity ratio at the surface and, as far as short waves are 
concerned, its penetration depth. 

These results can have implications for steep waves where parasitic capillaries are 
generated and for observations of the wind-drift current. 

1. Introduction 
The trajectories of steady steep symmetric deep-water pure capillary waves were 

calculated recently in a paper by the present author (Hogan 1984). It was found 
possible to present the results in exact analytic form, up to and including the highest 
wave. In the steeper waves, the orbits were found to be neither circular nor closed. 
For the highest wave, a particle on the surface moves forward nearly eight wave- 
lengths in the course of one orbit at  a time-averaged drift velocity U equal to almost 
90 yo of the phase speed c of the wave. 

In  the present work, we investigate the influence of gravity on these results, 
considering the full range of possibilities from gravity-free to gravity-only propagation. 
We make use of computational results from earlier work (Hogan 1980, 1981) which 
dealt with the form of the wave profile. This is because no exact analytic solution 
has yet been found. The results show that gravity need only be quite weak for the 
trajectory properties of pure capillary waves to be influenced rather severely. At the 
other extreme, it appears that surface tension does not have a marked effect on the 
trajectories of pure gravity waves. When the two effects are comparable, however, 
some quite remarkable convoluted trajectories have been discovered. In general, the 
drift velocity ratio is curtailed in magnitude at the surface for all but the shortest 
waves. 

The form of this paper is similar to Hogan (1984). Thus in $2 the problem of 
the propagation of free-surface nonlinear deep-water gravity-capillary waves is 
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discussed. In  $3 we derive formulae for the global properties of complete surface- 
particle trajectories and present results for selected gravity-capillary waves. In $4 
the trajectories of surface and subsurface particles are presented. The drift-velocity 
ratio U / c  is also presented as a function of the mean depth of fluid particles. 

2. Gravity-capillary waves 
The type of waves we consider are similar to those examined in Hogan (1984), 

except that we now include the effects of gravity. Thus we calculate the trajectories 
of particles in steady symmetric periodic nonlinear gravity-capillary waves which 
propagate on the surface of an incompressible inviscid infinitely deep fluid. The 
motion in the fluid is taken to be two-dimensional and irrotational and the wave is 
moving to the right with speed c. There is no motion at  great depths. By moving 
in a frame of reference with the waves, we reduce the flow to a steady state. Cartesian 
axes are chosen with x measured horizontally to the right and y vertically upwards. 
The velocity potential is denoted by # and the stream function by $, in the steady 
motion. The free surface corresponds to $ = 0 with $ > 0 below (decreasing y). The 
crest of one wave corresponds to # = 0. 

z = x+iy (2.1) 

and x = #+i@ (2.2) 

If we take 

then this problem can be solved if we assume a suitable analytic expansion of z in 
terms of x, as was done in Hogan (1980, 1981). The wavelength A is taken to equal 
2n, and so the wavenumber k is unity. 

x m l  inx Thus we assume 
z=--+i -a,exp-, 

C C n - l n  

where the a, are real coefficients. This form of the solution is periodic in 6 and gives 
a uniform flow with speed c to the left at  great depths. The a, are determined from 
Bernoulli’s equation at the free surface y = 7, namely 

S 
!& + g7 + = constant, (2.4) 

where qs denotes the speed of surface particles, g is the acceleration due to gravity, 
S is the surface-tension coefficient divided by the density, and R is the radius of 
curvature. One method of obtaining values for the a, is to assume a power-series 
expansion in terms of the wave amplitude h, defined as half the vertical distance 
between the wave crest and wave trough. In Hogan (1980) the assumption was made 
that 03 

a,= Z (n=  1,2,  ...). (2.5) 
k-0 

The coefficients ank were obtained by substituting (2.3) and (2.5) into (2.4), 
equating like powers of h and truncating. The Fourier coefficients a, were then 
recovered by summing the series using Pad6 approximants. However, the form 
assumed in (2.5) leads to singularities in the ank at wavelengths given by 

where 

1 
K = -  ( n = 2 , 3 ,  ...), 

n 
4n2 s 

K = -  
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These are known as Wilton's (1915) ripples. Physically this corresponds to demanding 
a steady solution for wavelengths at  which triad resonance, and hence possible wave 
generation, is known to occur. It turns out that several different steady solutions are 
possible at each singular value of K ,  as shown by Wilton (1915), but this involves a 
different ordering of the coefficients a,. Thus at K = Hogan (1981) took 

where int (p) means the integral part of p. 
Other solution procedures (e.g. Chen & Saffman 1979, 1980) have avoided the 

assumption of series expansion, and this has led to the conclusion that several families 
of gravity-capillary waves exist at all values of K. In this paper we concentrate on 
the members of families generated by expansions (2.5) and (2.8). 

3. Method of solution 

q5 = q51 to 4 = q52 is given by 
The time t taken for a particle to travel along the streamline $ = $c from the point 

(see e.g. Longuet-Higgins 1979, 93). Then the trajectory of the particle in a frame 
of reference stationary with respect to great depths is given by 

(3.3) 

(3.4) 

(3.5) (n = 1,2  ,... ). 

Now it is a simple matter to calculate the total time T taken to complete one 
orbit, from the point dl  = 0 to q52 = 2m/k along the streamline $ = t,hC. From (3.1) 
and (3.3) we find 

(3.6) 
cT 
h - =fo($/c). 

From Hogan (1984), the time-averaged horizontal drift velocity U is given by 

(3.7) 

and the distance [XI through which a particle moves is given by 
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K 

0 
0.000075 
0.0075 
0.3 
0.4 
0.5 
0.5 
0.5 
0.8 
1 .o 
5.0 

10.0 
co 

h 

0.443 1 
0.4365 
0.3545 
0.15 
0.11 
0.2 
0.2 
0.5450 
0.7243 
0.8069 
1.484 6 
1.7468 
2.2926 

[XI/A 
0.287 
0.282 
0.151 25 
0.029 2 10 
0.031 377 
0.224 728 
0.072964 
0.622562 
0.899935 
1.028947 
2.782856 
3.971618 
7.995 564 

cT/A 

1.287 
1.282 
1.15125 
1.029210 
1.031 377 
1.224728 
1.072 964 
1.622 562 
1.899 935 
2.028 947 
3.782 856 
4.971 618 
8.995564 

u/c 
0.223 
0.220 
0.131 38 
0.028381 
0.030422 
0.183492 
0.068002 
0.383691 
0.473666 
0.507 133 
0.735649 
0.798858 
0.888834 

TABLE 1 .  Parameters for complete orbits of surface particles in gravity-capillary waves 

In  table 1 we give these global properties [ X ] / h ,  cT/h and U/c for surface particles 
of various waves considered in Hogan (1980, 1981). The key quantityf,,($) was 
calculated by truncation and direct summation of the converged Fourier coefficients 
used in those papers. The table divides naturally into two parts, according to the type 
of wave. Gravity-like waves, denoted by the letter g, have a phase speed that increases 
with amplitude from the linear case, whereas capillary-like waves, denoted by the 
letter c, have a phase speed that decreases with increasing amplitude. This crude 
distinction is sufficient for our present purposes, but does not imply that waves of 
the same type belong to the same family. 

Several features of this table require comment. The values given for K = 0, 
h = 0.4431 differ from those given by Srokosz (1981). He found [ q / h  = 0.375, 
cT/A = 1.375 and U / c  = 0.273 for this highest wave. The difference lies in the fact 
that the series in (2.3) fails to converge satisfactorily for waves of limiting steepness. 
This has already been noted in Hogan (1980), and arises because the method was 
designed for use with waves influenced principally by surface tension. In this latter 
area, the convergence is excellent. 

For K = 0.000075 and 0.0075 the values of h used cannot be regarded as the highest 
possible physically but merely the best obtainable using this technique (the precise 
definition is given in Hogan 1980). Higher waves are to be anticipated, and, with that, 
possible higher values of the global trajectory properties. The same must also be said 
for the waves at K = 0.3 and 0.4, as well as the gravity-like wave at K = 0.5, h = 0.2. 
The capillary-like wave at K = 0.5, h = 0.2 is included for comparison with the 
gravity-like wave with the same values of K and h. It was possible to obtain higher 
capillary-like waves. In  fact the limiting profile of a bubble enclosed in the trough 
was obtained in this case, although the value of h may have been underestimated 
(for full details see Hogan 1981). For K = 0.8, 1.0, 5.0 and 10.0 the global properties 
are for surface particles of highest capillary-like waves. The results for pure capillary 
waves (infinite K )  are included for reference, having been obtained analytically in 
Hogan (1984). Clearly, increasing gravity has the effect of reducing the values of the 
global properties of the particle trajectories of waves strongly influenced by surface 
tension. 

From table 1 we see that [XI x 3 cm for a wave with K = 0.0075, h = 0.3545. On 
the other hand, for K = 10.0, h = 1.7468 we have [XI x 1.1 cm. Thus since very steep 
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short waves are often present when long nonlinear waves propagate, it  is quite 
possible that short waves can contribute dramatically to the observed particle 
motion. 

If we retain only those terms quadratic in the wave steepness, the results given 
by (3.6), (3.7) and (3.8) agree with the classical solution (see Lamb 1932, chap. 9). 

4. Surface and subsurface particle trajectories 
The trajectories of surface and subsurface particles are given by (3.2). This requires 

a knowledge of the time t(a) that a particle takes to move from (say) the crest, g5 = 0, 
to a point g5 = a c / k ,  where 0 < a < 2x. We find this very simply from (3.1) and (3.3) 
to be given by 

(4.1) kct(a) = af0($)+2 Z --jn($) sinm. 

From (2.3), (3.2) and (4.1) we find the coordinates (X, Y) of the orbit of the particle 

(4.2) 

“ 0 1  

n-1 

to be 
“O1 

X = avo($) - 1) + Z - (2fn($) -an ecn*lc) sin nu, 
n-1 

where the f,($) (n = 0,1,2, ...) are given in (3.4) and (3.5). A t  great depths, 
X x a, e-*lc sin a, Y + $/c z a, e-*lc cos a, which gives 

This corresponds to circular paths of radius a, .-*Ic with centre (0, - $/c). 

displacement of a streamline from the surface. Thus if we define 
We also evaluate the drift velocity U from (3.7), as a function of the mean 

then, using (2.3), it  is straightforward to show that, for $ = eC, 
(4.5) 

If we now set yC = Yo when $c = 0, then the mean displacement of a streamline from 
the surface is given by 

(4.7) 

where it must be remembered that A = 2n. 
The series in (4.2), (4.3) and (4.7) are summed by truncation and direct summation, 

exactly as forto($) in 93. 
In view of the absence of a firm criterion for the highest wave when K is small, it  

was decided to compare trajectory properties of waves with K = 0.0075, h = 0.35 and 
with K = 0.000075, h = 0.35. The results are given in table 2 to three significant 
figures. The surface particles of the wave most influenced by surface tension 
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K 

0.007 5 
0.000075 
0.007 5 
0.000075 
0.007 5 
0.000075 
0.007 5 
0.000075 

h 

0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 
0.35 

+ l c A  
0 
0 
0.1 
0.1 
0.2 
0.2 
0.3 
0.3 

[ X I l A  
0.146 
0.145 
0.025 1 
0.025 7 
0.00655 
0.00670 
0.001 82 
0.001 87 

UlC 
0.128 
0.127 
0.0245 
0.0250 
0.00651 
0.00666 
0.001 82 
0.001 86 

TABLE 2. Comparison of surface and subsudace orbits for waves 
with K = 0.0075, h = 0.35 and K = 0.000075, h = 0.35 

A 

0.0 

-0.2 

-0.4 

-0.6 

-O** ii 
0 0.2 0.4 0.6 0.8 1 .o 

FIGURE 1. Drift-velocity ratio U / c  for highest waves with K = 0.8, 1.0, 5.0, 10.0 and K infinite as 
a function of the mean displacement of fluid particles (&- j , , ) /A.  

( K  = 0.0075) travel further and, on average, faster than the wave with K = 0.000075. 
But it is quite noticeable that the same wave's subsurface particles travel less far and, 
on average, slower. This can be explained by the fact that for K = 0.000075 the fist 
two Fourier coefficients a, and u2 of the wave profile are actually larger than the 
corresponding coefficients for K = 0.0075. The remainder, however, are smaller. Thus 
two harmonics whose influence is felt at greater depths have larger amplitudes, and 
so can be expected to give larger values for the trajectory properties. In fact for 
K = 0.000075, h = 0.35 the set of coefficients (ul, u2, a3, u4) = (0.28333, 0.17362, 
0.12103,0.08927), whereas for K = 0.0075, h = 0.35 the set takes the values (0.27992, 
0.17249,0.12153,0.09224). On the other hand, the difference a t  the surface is quite 
consistent with results in the rest of this paper, that is, an increase in surface tension 
tends to increase the properties of surface particles. 
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-0.4 

FIGURE 2. (a) Particle trajectories for K = 10.0, h = 1.7468 along streamlines $ /cA = 0,O.l. ( b )  Full 
trajectories for $/cA = 0.1, 0.2,0.3, 0.4, 0.5 together with part trajectory for $ /cA = 0. 

-0.6 -0.4 0.2 0.4 0.6 

x11 

0.2V-0.2 

0.5 

FIGURE 3. Particle trajectories for K = 1.0, h = 0.8069 along 
streamlines $/ch = 0, 0.1, 0.2, 0.3, 0.4, 0.5. 
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s=O JI f :  JI s=O f :  

0.4 -0.4 

FIQURE 4. Particle trajectories for K = 0.5, h = 0.5450 (capillary-like 
branch) along streamlines @/cA = 0, 0.1, 0.2, 0.3, 0.4. 

ji _-  
L O  

h 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 
0 0.1 0.2 0.3 0.4 

- U 
C 

FIGURE 5. As figure 1 ,  for K = 0.5, h = 0.5450 (capillary-like branch). 

In figure 1 we plot drift-velocity profiles for K = 0.8, 1.0, 5.0, 10.0 and K infinite. 
The highest wave and its streamlines are considered in each case. We note that 
gravity's influence need only be small in order to severely reduce the depth and extent 
of the pure capillary wave drift profile. Thus K = 0.8 corresponds to a wavelength 
of nearly 2 cm in water, yet the surface-drift velocity ratio is nearly halved and the 
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0.15 @ 
-0.20 

0.25 

FIQURE 6. Particle trajectories for K = 0.5, h = 0.20 (gravity-like branch) 
along streamlines $/ch = 0, 0.05, 0.10, 0.15, 0.20, 0.25. 

depth of penetration cut by two-thirds. The original wave profiles for K = 1.0, 5.0, 
10.0 and K infinite are illustrated in figure 12 of Hogan (1980). The particle trajectories 
for the surface and subsurface particles of the highest wave with K = 10.0 are 
illustrated in figures 2(a,  b). This division is necessary for reasons of scale. Similar 
results hold for the highest wave with K = 5.0. The results for K = 1.0 are given in 
figure 3, with similar results holding for K = 0.8. Figures 2 and 3 can be compared 
with figure 3 of Hogan (1984). Again we note that only a small departure from the 
gravity-free case is enough to change the character of the trajectory dramatically. 
For example, when K = 0.8 the overall distance [ X ] / h  travelled by a surface particle, 
is nearly nine times smaller than for pure capillary waves. In  addition, no particle 
orbit is completely open, with the closed section always present near the trough. 
Consequently there is no cusp in any orbit, unlike the pure capillary case. We cannot, 
however, rule out such behaviour for finite K > 10.0. In  each case the surface particles 
spend a lot of their time near the wave crest, although for K = 0.8 the time spent near 
the trough becomes significant (nearly 50 yo). 

We now consider the particle trajectories of waves calculated in Hogan (1981). This 
work was concerned with nonlinear examples of Wilton’s ripples, and in particular 
with the first ripple at K = 0.5. It proved possible to derive a highest capillary-like 
wave, with h = 0.5450. This has a dip in its crest, but otherwise is very similar to 
capillary waves with larger values of K .  It is illustrated in figure 4 of Hogan (1981). 
The particle trajectories are given in figure 4 and the drift-velocity profile in figure 5. 
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i””’ 

0.100 FR -0.10 

FIGU 
u 

‘RE 7.  Particle trajectories for K = 0.5, h = 0.20 (capillary-like branch) 
along streamlines @/ch = 0, 0.025, 0.050, 0.075, 0.100, 0.125. 

The trajectory clearly rises after the particle passes through a crest. Although a 
little difficult t o  discern on this scale, the tangent to the trajectory is horizontal at 
the crest. 

The highest waveform of the gravity-like wave a t  K = 0.5 is still unknown. 
Nevertheless, convergent profiles were obtained up to h = 0.20, which contained an 
elevation in the trough (Hogan 1981, figure 6). It is of interest to compare particle 
trajectories of these two types of waves, both with K = 0.5 and h = 0.20, but otherwise 
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1 0.10 

115 

1 
J 

-0.10 

FIGURE 8. Free-surface particle trajectories for both gravity- and capillary-like 
waves at K = 0.5, h = 0.20 (drawn with coincident troughs). 

x 

0 0.05 0.10 0.15 0.20 0.25 0.30 
- U 

FIGURE 9. Drift-velocity ratios U / c  as a function of the mean displacement of fluid particles 
(&--Y@)/A for both gravity- and capillary-like waves at K = 0.5, h = 0.20. 

c 

distinct. The trajectories of the surface and subsurface particles of the gravity-like 
wave are illustrated in figure 6, with the capillary-like trajectories in figure 7. The 
free-surface trajectories are compared in figure 8 and the drift-velocity profiles in 
figure 9. Immediately it is clear that there is a great difference between the two types. 
In particular, the double-loop trajectory of the free-surface particles of the gravity-like 
waves is remarkable, with the form persisting for some subsurface particles. Never- 
theless, at great depths it becomes circular. For capillary-like waves the trajectory 
rises after the particle at $ / c A  = 0.075 passes a crest, but quickly regains its circular 
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FIGURE 10. Particle trajectories for K = 0.4, h = 0.11 along streamlines 
$/ch = 0, 0.025, 0.050, 0.075, 0.100. 

form at larger values of $/ch. The difference is probably best highlighted in figure 8. 
Here the capillary-like wave has been drawn so that the y-coordinate of its trough 
(and hence its crest) coincides with that of the gravity-like wave (the mean levels 
of the two waves are not equal). It is noticeable how both the vertical and horizontal 
excursions of the surface particle in the gravity-like wave are larger than the 
capillary-like wave. The total time taken to cover both orbits is about the same, but 
the gravity-like wave particles travel nearly three times as fast. The trajectories of 
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0.05 

117 

FIGURE 11. As figure 10, for K = 0.3, h = 0.16. 

particles in the highest gravity-like wave a t  K = 0.5 remain a matter of speculation, 
but the double-loop nature can be expected to remain, particularly since, with a 
crest in its trough and the subtroughs deepening, the wave may look very like two 
waves side by side. 

In Hogan (1981) .the gravity-like wave at K = 0.6 was compared with waves a t  
K = 0.3 and 0.4 (Hogan 1981, f igures 1 and 2). The steep waves at  K = 0.4 have an 
elevation in their troughs. But at  K = 0.3 the steep waves have two elevations in their 
troughs and are between two different Wilton-ripple wavelengths ( K  = and t ) .  In 
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figure 10 we present the particle trajectories for waves at K = 0.4 and h = 0.11. This 
is very similar to figure 6. Both waves considered in figure 6 and figure 10 will contain 
a trajectory cusped in the trough. The exact values of $/ch have not been determined. 
It was not possible to obtain higher waves owing to convergence difficulties, but the 
double-loop nature is expected to persist and become more noticeable as the 
waveheight increases. In  figure 11 the trajectories for K = 0.3 and h = 0.15 are given. 
The orbit of the surface particles now contain two cusp-like features which correspond 
to the elevations in the trough. For higher waves it could be expected that the cusps 
will become subloops, which may subsequently overwhelm the main loop. The surface 
trajectories in figures 10 and 11 are also notable, since the horizontal excursion of 
the particle is actually less than its vertical excursion, in contrast with the other 
trajectories calculated in this paper. 

5. Discussion 
We have presented results for the particle trajectories of nonlinear water waves 

influenced by both surface tension and gravity. When the former is dominant, the 
results are similar to those obtained by the present author for gravity-free propagation 
(Hogan 1984). However, the influence of gravity need only be very small to reduce 
the scale of those results dramatically. When surface-tension forces are weak the 
trajectory properties are very similar to the pure-gravity case for waves of the same 
steepness. When the forces are approximately equal, waves with the same length and 
height but belonging to different families of Wilton’s ripples are seen to possess 
completely different trajectory properties. This could be used as a way of distinguishing 
between them. Still further waves, with elevations in their troughs, are shown to 
possess extraordinary trajectories with subloops on a main circular loop (but rather 
mundane drift-velocity profiles). In  summary, the effect of increasing surface tension 
is to produce an increase in the relative horizontal distance [m/A travelled by a 
surface particle in an orbit and generally to increase the magnitude and extent of 
the time-averaged drift velocity ratio. 

On other families (branches), gravity-capillary waves are known to possess even 
more elevations in their troughs (Chen & Saffman 1980, figures 9 and lo), and so 
presumably may have many looped structures in their particle trajectories. 

As in Hogan (1984), viscosity and surface-tension gradients have been ignored in 
this study. Similar remarks apply in this case as then, with the possible difference 
that the effects will become less important as surface tension decreases in relation 
to gravity. 

As explained in 93, very short steep ripples can have similar absolute particle 
displacements to longer nonlinear gravity waves. This may have implications for the 
observation of particle motions in steep gravity waves. Also the wind-drift current 
may well be modified in the presence of steep capillary waves. These results also have 
implications for mass transport of surface particles in partly filled horizontal pipes, 
where capillaries may be generated. 

The author gratefully acknowledges support from King’s College, Cambridge, in 
the form of a Junior Research Fellowship. 
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